Download An Introduction to Nonequilibrium Many-Body Theory by Joseph Maciejko PDF

By Joseph Maciejko

Show description

Read or Download An Introduction to Nonequilibrium Many-Body Theory PDF

Best thermodynamics and statistical mechanics books

Finite-temperature field theory: principles and applications

Completely revised and up to date, this new version develops the fundamental formalism and theoretical strategies for learning relativistic box idea at finite temperature and density. It begins with the path-integral illustration of the partition functionality after which proceeds to strengthen diagrammatic perturbation suggestions.

Extra info for An Introduction to Nonequilibrium Many-Body Theory

Example text

11) η¯=0,J=0 The generating functional has a path integral representation, Z[¯ η , J] = ¯ d]ei D[¯ c, c, d, ¯ S[¯ c,c,d,d]+ C dτ (¯ η d+¯ cJ) where we use the shorthand notation η¯d ≡ n η¯n dn and c¯J ≡ kα c¯kα Jkα . The d and the c fields are entangled in the Lagrangian Eq. 10). To disentangle them, we perform a shift of variables, dτ1 d¯m (τ1 )t∗kα,m gkα (τ1 , τ ) c¯kα (τ ) ≡ c¯kα (τ ) − m C m C ckα (τ ) ≡ ckα (τ ) − dτ1 gkα (τ, τ1 )tkα,m dn (τ1 ) 38 3 Applications where gkα (τ, τ1 ) is the contour-ordered Green’s function of the isolated leads defined earlier.

Phys. 58, 323 (1986). ˇ cka, and B. Velick´ 17. P. Lipavsk´ y, V. Spiˇ y, Phys. Rev. B 34, 6933 (1986). 18. D. C. Langreth and J. W. Wilkins, Phys. Rev. B 6, 3189 (1972). 19. D. C. Langreth, in Linear and Nonlinear Electron Transport in Solids (Plenum Press, New York, 1976), vol. 17 of NATO Advanced Study Institute, Series B: Physics, edited by J. T. Devreese and V. E. van Doren. 20. J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960). 21. G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).

Hall, J. Phys. A 8, 214 (1975). 11. Yu. A. Kukharenko and S. G. Tikhodeev, Zh. Eksp. Teor. Fiz 83, 1444 (1982) [Sov. Phys. JETP 56, 831 (1982)]. 12. M. Wagner, Phys. Rev. B 44, 6104 (1991). 13. H. -P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, Berlin, 1998). 14. A. Kamenev, cond-mat/0109316 (2001); cond-mat/0412296 (2004). 15. A. M. Zagoskin, Quantum Theory of Many-Body Systems (Springer, New York, 1998). 16. J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

Download PDF sample

Rated 4.07 of 5 – based on 21 votes